IV. SUPPLIER SELECTION

EVERYTHING CAN BE IMPROVED.

C. W. BARRON

Supplier Selection

Supplier Selection is presented in the following topic areas:

- Product/Service Requirements
 - Internal Design Reviews
 - Identifying Requirements
- Supplier Selection Planning
 - Supplier Comparison
 - Potential Suppliers Evaluation
 - Supplier Selection

Internal Design Reviews

It is important to recognize that a design is intended to satisfy customer needs.

Examples of internal customers and their requirements are detailed below:

Internal Customer	Requirements			
Sales	Cost and quantity			
Quality	Reliability and quality levels			
Top management	Profit and gross margin			
Manufacturing	Manufacturability requirements			
Service	Serviceability requirements			

Internal Design Reviews (Continued)

Examples of external customers and their requirements are illustrated below:

External Customer	Requirements		
End user	Quality characteristics		
Dealers, distributors	Service, storage, and delivery		
Regulatory agencies	Safety, emissions		

Both ISO 9001 and ISO/TS 16949 require a company to control design inputs related to the product, including applicable statutory and regulatory requirements.

It would be impractical (as well as almost impossible) for the design procedure to provide all details in developing the design specification. Usually, the design procedure includes a design input checklist that is reviewed for each item.

Internal Design Reviews (Continued)

Design Input Considerations

Customer drawings Quality system requirements

Customer contract Tooling, gages, fixtures, facilities

Market research results Training requirements

Sales projections Subcontractor requirements

Regulatory issues Serviceability requirements

Statutory issues Manufacturability requirements

Safety requirements Competitive analysis

Quality requirements Product performance requirements

Reliability requirements Price, cost, gross margin

Design goals Warranty, repair, return history

Design FMEA results Special product characteristics

Bill of materials Special process characteristics

Assumptions Product assurance requirements

Each area of the checklist is reviewed to develop the design specification.

Internal Design Reviews (Continued)

Design specifications may be developed with an iterative approach, in phases, or in stages. An example of the sequence of design specifications development is:

- System
- Subsystem
- Module
- Component or material

Once the design specification phase starts to take shape, a design review should take place. A design review is usually considered mandatory when the design specification (concept phase) is complete, or complete enough to assign engineers to the task of making the design specifications real hardware prototypes.

Often a product design requires trade-offs between conflicting aspects of reliability, maintainability, cost, weight, ease of manufacture and performance. The final decision on a product design, therefore, depends heavily upon the experience of members of the design team.

DESCRIPTION OF THE PROPERTY OF

IV. SUPPLIER SELECTION III.A.1 PRODUCT/SERVICE REQMNTS./INTERNAL DESIGN REVIEWS

Internal Design Reviews (Continued)

The membership and responsibilities of a typical design review committee are shown in the Table below.

Member	Review Phase				se	Responsibility
	I	II	Ш	IV	٧	
Chairperson (of design function)	X	X	X	X	X	Calls and conducts reviews; issues all reports
Design engineer (of this product)		X	X	X	X	Prepares and presents the design approach
Independent design engineer		X	X	X	X	Reviews and verifies adequacy of design
Customer or marketing representative	X	X	X	X	X	Ensures that the customer's viewpoint is represented
Reliability manager or engineer	X	x	X	X	X	Evaluates the design for reliability
Materials/stress engineer		x				Verifies stress calculations and material usage
Human factors/safety engineer		x	X			Ensures product safety in use and manufacture
Manufacturing engineer			X	X	X	Ensures cost effective manufacture
Quality engineer or quality representative		х	x	х	X	Reviews inspection and test capabilities
Test engineer			X		X	Presents test procedures and results
Others						As required

Internal Design Reviews (Continued)

The design review considers all important factors in the creation of a mature product design.

- Are customer performance requirements met?
- Is the design as simple as possible?
- Are proven components and configurations used?
- Are manufacturing tolerances adequate?
- Is the manufacturing process capable?
- Are approved parts used in all practical cases?
- Are environmental requirements met?
- Are operational conditions considered?
- Are maintainability features present?
- Are there provisions for testing and inspection?
- Have potential failure modes been analyzed?
- Has a worst-case analysis been conducted?

Internal Design Reviews (Continued)

The design process goes through several phases. Examples of typical design phases and purposes are:

Design Phase	Purpose				
Concept	Acquire and document design inputs				
Design	Convert design inputs into documented specifications				
Prototype	Convert design specifications into hardware				
Pre-production	Pilot runs, capability analysis studies and confirmation				
Deployment	Full production				
Final	Determine the success of meeting the design inputs				

Design reviews should be conducted at the end of each phase.

IV. SUPPLIER SELECTION III.A.2 PRODUCT/SERVICE REQMNTS./IDENTIFYING REQUIREMENTS

Identifying Requirements

The customer must take steps to insure that the supplier's quality program is adequate. Additionally, a customer must take steps to ensure that their own quality program is adequate.

Bossert refers to the three Ps of evaluation:

Program: This judges the effectiveness of a supplier's efforts to provide an adequate product.

<u>Product:</u> Evidence is gathered on the degree of product conformity to specification and design.

<u>Process:</u> This involves the interaction of manufacturer management, workers, and machinery to provide a satisfactory end product.