THE
 SIX SIGMA GREEN BELT PRIMER

© by Quality Council of Indiana - All rights reserved
Fourth Edition - September, 2022
Quality Council of Indiana
602 West Paris Avenue
West Terre Haute, IN 47885
TEL: 800-431-1585
TEL: 812-533-4215
FAX: 812-533-4216
qci@qualitycouncil.com
https://www.qualitycouncil.com
VII. MEASURE - PROBABILITY \& STATISTICS

THERE IS ALWAYS A 100\% PROBABILITY THAT A PIECE OF TOAST WILL LAND BUTTERED SIDE DOWN ON NEW CARPET.

VII. MEASURE - PROBABILITY \& STATISTICS

Probability and Statistics

Probability is described in the following topic areas:

- Probability and Statistics
- Basic Probability Concepts
- Central Limit Theorem
- Statistical Distributions
VII. MEASURE - PROBABILITY \& STATISTICS
III.B. 1

PROBABILITY AND STATISTICS / BASIC CONCEPTS

Basic Statistical Terms

Continuous Distributions containing infinite Distributions (variable) data points. Examples: normal, uniform, exponential, and Weibull distributions.
Discrete Distributions resulting from countable Distributions (attribute) data that has a finite number of values. Examples: binomial, Poisson, and hypergeometric distributions.
Decision Distribution used to make decisions
Distributions and construct confidence intervals. Examples: t, F, and chi-square distributions.
Parameter The true numeric population value, often unknown, estimated by a statistic.
Population All possible observations of similar items from which a sample is drawn.
Sample
A randomly selected set of units or items drawn from a population.
Statistic
A numerical data value taken from a sample that may be used to make an inference about a population.

VII. MEASURE - PROBABILITY \& STATISTICS
 PROBABILITY AND STATISTICS / BASIC CONCEPTS
 Drawing Valid Statistical Conclusions

III.B. 1

Analytical (Inferential) Studies

The objective of statistical inference is to draw conclusions about population characteristics based on the information contained in a sample. Statistical inference in a practical situation contains two elements: (1) the inference and (2) a measure of its validity. The steps involved in statistical inference are:

- Define the problem objective precisely
- Decide if it will be evaluated by a one or two tail test
- Formulate a null and an alternate hypothesis
- Select a test distribution and a critical value of the test statistic reflecting the degree of uncertainty that can be tolerated (the alpha, a, risk)
- Calculate a test statistic from the sample
- Compare the calculated value to the critical value and determine if the null hypothesis is to be rejected. If the null is rejected, the alternate must be accepted.
VII. MEASURE - PROBABILITY \& STATISTICS
III.B. 1

PROBABILITY AND STATISTICS / BASIC CONCEPTS

Drawing Valid Conclusions (Continued)

Enumeration (Descriptive) Studies
Enumerative data is data that can be counted. Useful tools for tests of hypothesis conducted on enumerative data are the chi-square, binomial and Poisson distributions.

Enumerative study A study in which action will be taken on the universe.

Analytic study
A study in which action will be taken on a process to improve performance in the future.

Descriptive Statistics

Numerical, descriptive measures calculated from a sample are called statistics. When these measures describe a population, they are called parameters.

Measures	Statistics	Parameters
Mean	$\overline{\mathbf{X}}$	$\boldsymbol{\mu}$
Standard Deviation	\mathbf{s}	$\boldsymbol{\sigma}$

VII. MEASURE - PROBABILITY \& STATISTICS
III.B. 2

PROBABILITY AND STATISTICS / BASIC CONCEPTS

Probability

The probability of any event (E) lies between 0 and 1. The sum of the probabilities of all possible events (E) in a sample space $(S)=1$. The ratio of the chances favoring an event to the total number of chances for and against the event. Probability (P) is always a ratio.
$P=\frac{\text { Chances Favoring }}{\text { Chances Favoring Plus Chances Not Favoring }}$

Simple Events

If an experiment is repeated a large number of times, (\mathbf{N}), and the event (E) is observed n_{E} times, the probability of E is approximately:

$$
P(E) \approx \frac{n_{E}}{N}
$$

VII. MEASURE - PROBABILITY \& STATISTICS
III.B. 2

PROBABILITY AND STATISTICS / BASIC CONCEPTS

Compound Events

Compound events are formed by a composition of two or more events. The two most important probability theorems are the additive and multiplicative. For the following discussion, $E_{A}=A$ and $E_{B}=B$.
I. Composition. Consists of two possibilities -- a union or intersection.
A. Union of A and B.

If A and B are two events in a sample space ((S), the union of A and $B(A \cup B)$ contains all sample points in event A or B or both.
B. Intersection of A and B.

If A and B are two events in a sample space (S), the intersection of A and $B(A \cap B)$ is composed of all sample points that are in both A and B.
VII. MEASURE - PROBABILITY \& STATISTICS
III.B. 2

PROBABILITY AND STATISTICS / BASIC CONCEPTS

Compound Events (Continued)

$A \cup B$

$\mathbf{A} \cap \mathbf{B}$

Venn Diagrams Illustrating Union and Intersection
II. Event Relationships.
A. Complement of an Event.

The complement of an event A is all sample points in the sample space (S), but not in A. The complement of A is $1-P_{A}$.

B. Conditional Probabilities.

The conditional probability of event A, given that B has occurred, is:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \text { if } P(B) \neq 0
$$

VII. MEASURE - PROBABILITY \& STATISTICS
III.B. 2

PROBABILITY AND STATISTICS / BASIC CONCEPTS

Compound Events (Continued)

Event A and B are said to be independent if either:

$$
P(A \mid B)=P(A) \text { or } P(B \mid A)=P(B)
$$

C. Mutually Exclusive Events.

If event A contains no sample points in common with event B, then they are said to be mutually exclusive.
D. Testing for Event Relationships.

Are A and B mutually exclusive, complementary, independent, or dependent? If A and B contain one or more sample points in common, they are not mutually exclusive. If event B does not contain all points in S that are not in A, then they are not complementary.

