## THE SIX SIGMA GREEN BELT PRIMER

© by Quality Council of Indiana - All rights reserved

Fourth Edition - September, 2022

Quality Council of Indiana 602 West Paris Avenue West Terre Haute, IN 47885 TEL: 800-431-1585 TEL: 812-533-4215 FAX: 812-533-4216 qci@qualitycouncil.com https://www.qualitycouncil.com **VII. MEASURE - PROBABILITY & STATISTICS** 

## THERE IS ALWAYS A 100% PROBABILITY THAT A PIECE OF TOAST WILL LAND BUTTERED SIDE DOWN ON NEW CARPET.

FROM "MURPHY'S LAWS"



III.B.1

## **Probability and Statistics**

Probability is described in the following topic areas:

- Probability and Statistics
  - Basic Probability Concepts
  - Central Limit Theorem
- Statistical Distributions

III.B.1

## **Basic Statistical Terms**

- Continuous Distributions containing infinite Distributions (variable) data points. Examples: normal, uniform, exponential, and Weibull distributions.
- Discrete Distributions resulting from countable (attribute) data that has a finite number of values. Examples: binomial, Poisson, and hypergeometric distributions.
- Decision Distribution used to make decisions Distributions and construct confidence intervals. Examples: t, F, and chi-square distributions.
- Parameter The true numeric population value, often unknown, estimated by a statistic.
- Population All possible observations of similar items from which a sample is drawn.
- Sample A randomly selected set of units or items drawn from a population.
- Statistic A numerical data value taken from a sample that may be used to make an inference about a population.



III.B.1

## **Drawing Valid Statistical Conclusions**

## Analytical (Inferential) Studies

The objective of statistical inference is to draw conclusions about population characteristics based on the information contained in a sample. Statistical inference in a practical situation contains two elements: (1) the inference and (2) a measure of its validity. The steps involved in statistical inference are:

- Define the problem objective precisely
- Decide if it will be evaluated by a one or two tail test
- Formulate a null and an alternate hypothesis
- Select a test distribution and a critical value of the test statistic reflecting the degree of uncertainty that can be tolerated (the alpha, α, risk)
- Calculate a test statistic from the sample
- Compare the calculated value to the critical value and determine if the null hypothesis is to be rejected. If the null is rejected, the alternate must be accepted.



III.B.1

## **Drawing Valid Conclusions (Continued)**

## **Enumeration (Descriptive) Studies**

Enumerative data is data that can be counted. Useful tools for tests of hypothesis conducted on enumerative data are the chi-square, binomial and Poisson distributions.

| Enumerative study | A study in which action will be |
|-------------------|---------------------------------|
|                   | taken on the universe.          |

Analytic study A study in which action will be taken on a process to improve performance in the future.

## **Descriptive Statistics**

Numerical, descriptive measures calculated from a sample are called statistics. When these measures describe a population, they are called parameters.

| Measures  | Statistics | Parameters |
|-----------|------------|------------|
| Mean      | X          | μ          |
| Standard  | S          | σ          |
| Deviation |            |            |



III.B.2

# Probability

The probability of any event (E) lies between 0 and 1. The sum of the probabilities of all possible events (E) in a sample space (S) = 1. The ratio of the chances favoring an event to the total number of chances for and against the event. Probability (P) is always a ratio.

**Chances Favoring** 

P = Chances Favoring Plus Chances Not Favoring

## Simple Events

If an experiment is repeated a large number of times, (N), and the event (E) is observed  $n_E$  times, the probability of E is approximately:

$$P(E) \approx \frac{n_E}{N}$$



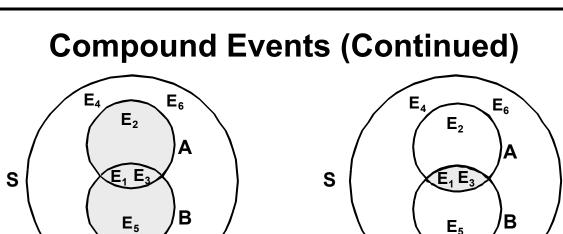
III.B.2

# **Compound Events**

Compound events are formed by a composition of two or more events. The two most important probability theorems are the additive and multiplicative. For the following discussion,  $E_A = A$  and  $E_B = B$ .

- I. <u>Composition.</u> Consists of two possibilities -- a union or intersection.
  - A. Union of A and B.

If A and B are two events in a sample space (S), the union of A and B (A  $\cup$  B) contains all sample points in event A or B or both.


B. Intersection of A and B.

If A and B are two events in a sample space (S), the intersection of A and B (A  $\cap$  B) is composed of all sample points that are in both A and B.

© QUALITY COUNCIL OF INDIANA CSSGB 2022

### VII. MEASURE - PROBABILITY & STATISTICS III PROBABILITY AND STATISTICS / BASIC CONCEPTS

III.B.2



 $\mathbf{A} \cup \mathbf{B}$ 

 $\mathbf{A} \cap \mathbf{B}$ 

Venn Diagrams Illustrating Union and Intersection

### II. Event Relationships.

### A. <u>Complement of an Event.</u>

The complement of an event A is all sample points in the sample space (S), but not in A. The complement of A is  $1-P_A$ .

B. <u>Conditional Probabilities.</u>

The conditional probability of event A, given that B has occurred, is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \text{ if } P(B) \neq 0$$



III.B.2

# **Compound Events (Continued)**

Event A and B are said to be independent if either:

P(A|B) = P(A) or P(B|A) = P(B)

C. <u>Mutually Exclusive Events.</u>

If event A contains no sample points in common with event B, then they are said to be mutually exclusive.

D. <u>Testing for Event Relationships.</u>

Are A and B mutually exclusive, complementary, independent, or dependent? If A and B contain one or more sample points in common, they are not mutually exclusive. If event B does not contain all points in S that are not in A, then they are not complementary.